力学[编辑]
取自维基百科
发展历史[编辑]
人们在日常劳动中使用杠杆、打水器具等等,逐渐认识物体受力,及平衡的情况。古希腊時代阿基米德曾对杠杆平衡、物体重心位置、物体在水中受到的浮力等,作了系统研究,确定它们的基本规律,初步奠定了静力学,即平衡理论的基础。
自文藝復興以降,科學革命興起,伽利略的自由落体运动规律,以及牛顿的运动定律皆奠定了动力学的基础。力学从此开始成为一门科学。此后弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。到20世纪初,在流体力学和固体力学中,实际应用跟数学理论的互相结合,使力学蓬勃起来,创立了许多新理论,同时也解决了工程技术中大量关键性问题。
经典力学及量子力學[编辑]
量子力學應用範圍較廣,不過主要是針對微觀的物質。根據對應原理,量子數相當大的量子系統可以用经典力学來描述,因此量子力學及经典力学不會衝突。量子力學可以解釋及預測分子、原子及基本粒子的許多行為。不過針對一般常見的巨觀系統,若配合量子力學會複雜到無法處理,因此仍然用经典力学的方式處理。
相對論及牛頓力學[编辑]
量子力學將力学延伸到经典力學以外的範圍,而愛因斯坦的廣義相對論及狹義相對論也將原來牛頓及伽利略的力學擴展到更大的範圍。在物體速度接近光速時,因相對論而產生的效應會主導物體的行為,也會使其速度不會超過光速。量子力學也需要配合相對論進行修正,量子场论就是量子力学和狭义相对论的结合。不過量子场论和广义相对论目前仍無法整合,這是大一統理論希望可以克服的問題。
依研究物體來分類[编辑]
力學中的一些分支也和所探討的「物體」特性有關。例如質點就是小的物體,在古典力學中只視為一個有質量的點。而剛體有固定的大小及尺寸,不允許形變,和質點比較,剛體增加了一些稱為自由度的參數,例如在空間中的方向。
Comments
Post a Comment